Information of news
  • Views: 0
  • Author: golemsonbi
  • Date: 10-01-2016, 00:15
 (Votes #: 0)

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives by Xiao-Li Meng

Category: E-Book

Download Now

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives by Xiao-Li Meng

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives by Xiao-Li Meng
English | Sep 3, 2004 | ISBN: 047009043X | 411 Pages | PDF | 5 MB

This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts.
The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data.
Key features of the book include:
Comprehensive coverage of an imporant area for both research and applications.
Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques.
Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference.
Includes a number of applications from the social and health sciences.
Edited and authored by highly respected researchers in the area.
DOWNLOAD LINKS:
Buy Premium To Support Me & Get Resumable Support & Max Speed


Links are Interchangeable - No Password - Single Extraction
Direct Download

Tags: Applied, Bayesian, Modeling, Causal, Inference, Incomplete, Perspectives


Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives by Xiao-Li Meng Fast Download via Rapidshare Hotfile Fileserve Filesonic Megaupload, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives by Xiao-Li Meng Torrents and Emule Download or anything related.
Dear visitor, you went to website as unregistered user.
We encourage you to Register or Login to website under your name.

Add comments

Name:*
E-Mail:*
Comments:
Enter Code: *